3 research outputs found
Current Trends and Future Perspectives of Antimutagenic Agents
Mutation is the process leading to heritable changes in DNA caused mainly by internal and external factors. Recently, studies on mutagenic agents have been increased due to increasing in mutation-related disease. The antimutagenic effect is desired to prevent mutation on genes or to inactivate the mutagenic agent. It seems that the interest in antimutagenic substances displaying multiple mechanisms of action will be an important trend in the research and development of new antimutagenic compounds in the near future. Therefore, this chapter displays various possible mechanisms of action for antimutagenic agent and introduces different types of antimutagens, natural and synthetic, that are considered very important
Design, synthesis and molecular docking of new N-4-piperazinyl ciprofloxacin-triazole hybrids with potential antimicrobial activity
New N-4-piperazinyl ciprofloxacin-triazole hybrids 6a-o were prepared and characterized. The in vitro antimycobacterial activity revealed that compound 6a experienced promising antimycobacterial activity against Mycobactrium smegmatis compared with the reference isoniazide (INH). Additionally, compound 6a exhibited broad spectrum antibacterial activity against all the tested strains either Gram-positive or Gram-negative bacteria compared with the reference ciprofloxacin. Also, compounds 6g and 6i displayed considerable antifungal activity compared with the reference ketoconazole. DNA cleavage assay of the highly active compounds 6c and 6h showed a good correlation between the Mycobactrium cleaved DNA gyrase assay and their in vitro antimycobactrial activity. Moreover, molecular modeling studies were done for the designed ciprofloxacin derivatives to predict their binding modes towards Topoisomerase II enzyme (PDB: 5bs8)