8 research outputs found

    Wolbachia strain wAu efficiently blocks arbovirus transmission in Aedes albopictus

    Get PDF
    The global incidence of arboviral diseases transmitted by Aedes mosquitoes, including dengue, chikungunya, yellow fever, and Zika, has increased dramatically in recent decades. The release of Aedes aegypti carrying the maternally inherited symbiont Wolbachia as an intervention to control arboviruses is being trialled in several countries. However, these efforts are compromised in many endemic regions due to the co-localization of the secondary vector Aedes albopictus, the Asian tiger mosquito. Ae. albopictus has an expanding global distribution following incursions into a number of new territories. To date, only the wMel and wPip strains of Wolbachia have been reported to be transferred into and characterized in this vector. A Wolbachia strain naturally infecting Drosophila simulans, wAu, was selected for transfer into a Malaysian Ae. albopictus line to create a novel triple-strain infection. The newly generated line showed self-compatibility, moderate fitness cost and complete resistance to Zika and dengue infections

    Bunyamwera virus infection of Wolbachia-carrying aedes aegypti mosquitoes reduces Wolbachia density

    Get PDF
    Wolbachia symbionts introduced into Aedes mosquitoes provide a highly effective dengue virus transmission control strategy, increasingly utilised in many countries in an attempt to reduce disease burden. Whilst highly effective against dengue and other positive-sense RNA viruses, it remains unclear how effective Wolbachia is against negative-sense RNA viruses. Therefore, the effect of Wolbachia on Bunyamwera virus (BUNV) infection in Aedes aegypti was investigated using wMel and wAlbB, two strains currently used in Wolbachia releases for dengue control, as well as wAu, a strain that typically persists at a high density and is an extremely efficient blocker of positive-sense viruses. Wolbachia was found to reduce BUNV infection in vitro but not in vivo. Instead, BUNV caused significant impacts on density of all three Wolbachia strains following infection of Ae. aegypti mosquitoes. The ability of Wolbachia to successfully persist within the mosquito and block virus transmission is partially dependent on its intracellular density. However, reduction in Wolbachia density was not observed in offspring of infected mothers. This could be due in part to a lack of transovarial transmission of BUNV observed. The results highlight the importance of understanding the complex interactions between multiple arboviruses, mosquitoes and Wolbachia in natural environments, the impact this can have on maintaining protection against diseases, and the necessity for monitoring Wolbachia prevalence at release sites

    Wolbachia strain wAlbB shows favourable characteristics for dengue control use in Aedes aegypti from Burkina Faso

    Get PDF
    Dengue represents an increasing public health burden worldwide. In Africa, underreporting and misdiagnosis often mask its true epidemiology, and dengue is likely to be both more widespread than reported data suggest and increasing in incidence and distribution. Wolbachia-based dengue control is underway in Asia and the Americas but has not to date been deployed in Africa. Due to the genetic heterogeneity of African Aedes aegypti populations and the complexity of the host-symbiont interactions, characterization of key parameters of Wolbachia-carrying mosquitoes is paramount for determining the potential of the system as a control tool for dengue in Africa. The wAlbB Wolbachia strain was stably introduced into an African Ae. aegypti population by introgression, and showed high intracellular density in whole bodies and different mosquito tissues; high intracellular density was also maintained following larval rearing at high temperatures. No effect on the adult lifespan induced by Wolbachia presence was detected. Moreover, the ability of this strain to strongly inhibit DENV-2 dissemination and transmission in the host was also demonstrated in the African background. Our findings suggest the potential of harnessing Wolbachia for dengue control for African populations of Ae. aegypti

    High temperature cycles result in maternal transmission and dengue infection differences between Wolbachia strains in Aedes aegypti

    Get PDF
    Environmental factors play a crucial role in the population dynamics of arthropod endosymbionts, and therefore in the deployment of Wolbachia symbionts for the control of dengue arboviruses. The potential of Wolbachia to invade, persist, and block virus transmission depends in part on its intracellular density. Several recent studies have highlighted the importance of larval rearing temperature in modulating Wolbachia densities in adults, suggesting that elevated temperatures can severely impact some strains, while having little effect on others. The effect of a replicated tropical heat cycle on Wolbachia density and levels of virus blocking was assessed using Aedes aegypti lines carrying strains wMel and wAlbB, two Wolbachia strains currently used for dengue control. Impacts on intracellular density, maternal transmission fidelity, and dengue inhibition capacity were observed for wMel. In contrast, wAlbB-carrying Ae. aegypti maintained a relatively constant intracellular density at high temperatures and conserved its capacity to inhibit dengue. Following larval heat treatment, wMel showed a degree of density recovery in aging adults, although this was compromised by elevated air temperatures

    Genome sequencing and comparative analysis of Wolbachia strain wAlbA reveals Wolbachia-associated plasmids are common

    No full text
    Wolbachia are widespread maternally-transmitted bacteria of arthropods that often spread by manipulating their host’s reproduction through cytoplasmic incompatibility (CI). Their invasive potential is currently being harnessed in field trials aiming to control mosquito-borne diseases. Wolbachia genomes commonly harbour prophage regions encoding the cif genes which confer their ability to induce CI. Recently, a plasmid-like element was discovered in wPip, a Wolbachia strain infecting Culex mosquitoes; however, it is unclear how common such extra-chromosomal elements are in Wolbachia. Here we sequenced the complete genome of wAlbA, a strain of the symbiont found in Aedes albopictus, after eliminating the co-infecting and higher density wAlbB strain that previously made sequencing of wAlbA challenging. We show that wAlbA is associated with two new plasmids and identified additional Wolbachia plasmids and related chromosomal islands in over 20% of publicly available Wolbachia genome datasets. These plasmids encode a variety of accessory genes, including several phage-like DNA packaging genes as well as genes potentially contributing to host-symbiont interactions. In particular, we recovered divergent homologues of the cif genes in both Wolbachia- and Rickettsia-associated plasmids. Our results indicate that plasmids are common in Wolbachia and raise fundamental questions around their role in symbiosis. In addition, our comparative analysis provides useful information for the future development of genetic tools to manipulate and study Wolbachia symbionts

    Evaluation of an engineered Zika virus-like particle vaccine candidate in a mosquito-mouse transmission model

    Get PDF
    The primary route of Zika virus (ZIKV) transmission is through the bite of an infected Aedes mosquito, when it probes the skin of a vertebrate host during a blood meal. Viral particles are injected into the bite site together with mosquito saliva and a complex mixture of other components. Some of them are known to play a key role in the augmentation of the arbovirus infection in the host, with increased viremia and/or morbidity. This vector-derived contribution to the infection is not usually considered when vaccine candidates are tested in preclinical animal models. In this study, we performed a preclinical validation of a promising ZIKV vaccine candidate in a mosquito-mouse transmission model using both Asian and African ZIKV lineages. Mice were immunized with engineered ZIKV virus-like particles and subsequently infected through the bite of ZIKV-infected Aedes aegypti mosquitoes. Despite a mild increase in viremia in mosquito-infected mice compared to those infected through traditional needle injection, the vaccine protected the animals from developing the disease and strongly reduced viremia. In addition, during peak viremia, naive mosquitoes were allowed to feed on infected vaccinated and nonvaccinated mice. Our analysis of viral titers in mosquitos showed that the vaccine was able to inhibit virus transmission from the host to the vector

    Evaluation of an Engineered Zika Virus-Like Particle Vaccine Candidate in a Mosquito-Mouse Transmission Model

    No full text
    : The primary route of Zika virus (ZIKV) transmission is through the bite of an infected Aedes mosquito, when it probes the skin of a vertebrate host during a blood meal. Viral particles are injected into the bite site together with mosquito saliva and a complex mixture of other components. Some of them are known to play a key role in the augmentation of the arbovirus infection in the host, with increased viremia and/or morbidity. This vector-derived contribution to the infection is not usually considered when vaccine candidates are tested in preclinical animal models. In this study, we performed a preclinical validation of a promising ZIKV vaccine candidate in a mosquito-mouse transmission model using both Asian and African ZIKV lineages. Mice were immunized with engineered ZIKV virus-like particles and subsequently infected through the bite of ZIKV-infected Aedes aegypti mosquitoes. Despite a mild increase in viremia in mosquito-infected mice compared to those infected through traditional needle injection, the vaccine protected the animals from developing the disease and strongly reduced viremia. In addition, during peak viremia, naive mosquitoes were allowed to feed on infected vaccinated and nonvaccinated mice. Our analysis of viral titers in mosquitos showed that the vaccine was able to inhibit virus transmission from the host to the vector. IMPORTANCE Zika is a mosquito-borne viral disease, causing acute debilitating symptoms and complications in infected individuals and irreversible neuronal abnormalities in newborn children. The primary vectors of ZIKV are Aedes aegypti mosquitoes. Despite representing a significant public health burden with a widespread transmission in many regions of the world, Zika remains a neglected disease with no effective antiviral therapies or approved vaccines. It is known that components of the mosquito bite lead to an enhancement of viral infection and spread, but this aspect is often overlooked when vaccine candidates undergo preclinical validation. In this study, we included mosquitoes as viral vectors, demonstrating the ability of a promising vaccine candidate to protect animals against ZIKV infections after the bite of an infected mosquito and to also prevent its further transmission. These findings represent an additional crucial step for the development of an effective prevention tool for clinical use
    corecore