5,224 research outputs found

    The signature of a splice

    Get PDF
    We study the behavior of the signature of colored links [Flo05, CF08] under the splice operation. We extend the construction to colored links in integral homology spheres and show that the signature is almost additive, with a correction term independent of the links. We interpret this correction term as the signature of a generalized Hopf link and give a simple closed formula to compute it.Comment: Updated version. Sign corrected in Theorems 2.2 and 2.10 of the previous version. Also Corollary 2.6 was corrected and an Example added. 24 pages, 5 figures. To appear in IMR

    Slopes and signatures of links

    Full text link
    We define the slope of a colored link in an integral homology sphere, associated to admissible characters on the link group. Away from a certain singular locus, the slope is a rational function which can be regarded as a multivariate generalization of the Kojima--Yamasaki η\eta-function. It is the ratio of two Conway potentials, provided that the latter makes sense; otherwise, it is a new invariant. The slope is responsible for an extra correction term in the signature formula for the splice of two links, in the previously open exceptional case where both characters are admissible. Using a similar construction for a special class of tangles, we formulate generalized skein relations for the signature

    Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

    Full text link
    Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve very good performance at relatively low computational cost. Recently, the introduction of residual connections in conjunction with a more traditional architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge; its performance was similar to the latest generation Inception-v3 network. This raises the question of whether there are any benefit in combining the Inception architecture with residual connections. Here we give clear empirical evidence that training with residual connections accelerates the training of Inception networks significantly. There is also some evidence of residual Inception networks outperforming similarly expensive Inception networks without residual connections by a thin margin. We also present several new streamlined architectures for both residual and non-residual Inception networks. These variations improve the single-frame recognition performance on the ILSVRC 2012 classification task significantly. We further demonstrate how proper activation scaling stabilizes the training of very wide residual Inception networks. With an ensemble of three residual and one Inception-v4, we achieve 3.08 percent top-5 error on the test set of the ImageNet classification (CLS) challeng

    On Primitivity of Sets of Matrices

    Full text link
    A nonnegative matrix AA is called primitive if AkA^k is positive for some integer k>0k>0. A generalization of this concept to finite sets of matrices is as follows: a set of matrices M={A1,A2,…,Am}\mathcal M = \{A_1, A_2, \ldots, A_m \} is primitive if Ai1Ai2…AikA_{i_1} A_{i_2} \ldots A_{i_k} is positive for some indices i1,i2,...,iki_1, i_2, ..., i_k. The concept of primitive sets of matrices comes up in a number of problems within the study of discrete-time switched systems. In this paper, we analyze the computational complexity of deciding if a given set of matrices is primitive and we derive bounds on the length of the shortest positive product. We show that while primitivity is algorithmically decidable, unless P=NPP=NP it is not possible to decide primitivity of a matrix set in polynomial time. Moreover, we show that the length of the shortest positive sequence can be superpolynomial in the dimension of the matrices. On the other hand, defining P{\mathcal P} to be the set of matrices with no zero rows or columns, we give a simple combinatorial proof of a previously-known characterization of primitivity for matrices in P{\mathcal P} which can be tested in polynomial time. This latter observation is related to the well-known 1964 conjecture of Cerny on synchronizing automata; in fact, any bound on the minimal length of a synchronizing word for synchronizing automata immediately translates into a bound on the length of the shortest positive product of a primitive set of matrices in P{\mathcal P}. In particular, any primitive set of n×nn \times n matrices in P{\mathcal P} has a positive product of length O(n3)O(n^3)
    • …
    corecore