6 research outputs found

    Laboratory and experimental hut trial evaluation of VECTRON™ T500 for indoor residual spraying (IRS) against insecticide resistant malaria vectors in Burkina Faso

    Get PDF
    Background: Malaria cases in some areas could be attributed to vector resistant to the insecticide. World Health Organization recommended insecticides for vector control are limited in number. It is essential to find rotational partners for existing Indoor Residual Spraying (IRS) products. VECTRON™ T500 is a novel insecticide with broflanilide as active ingredient. It has a mode of action on mosquitoes completely different to usually used. The aim of this study was to determine the optimum effective dose and efficacy of VECTRONTM T500 against susceptible and resistant strains of Anopheles in Burkina Faso. Methods: VECTRON™T500 was sprayed at 50, 100 and 200 mg/m² doses onto mud and concrete blocks using Potter Spray Tower. The residual activity of broflanilide was assessed through cone bioassays 1 week and then monthly up to 14 months post spraying. Its efficacy was evaluated at 100 and 150 mg/m² against wild free-flying mosquitoes in experimental huts on both substrates. Actellic 300CS was applied at 1000 mg/m² as reference product. Cone assays were conducted monthly, using susceptible and resistant mosquito strains. Results: In the laboratory, VECTRON™ T500 showed residual efficacy (≥80% mortality) on An. gambiae Kisumu up to 12 and 14 months, respectively, on concrete and mud blocks. Similar results were found with 100 and 200 mg/m² using An. coluzzii pyrethroid resistant strain. In experimental huts, a total of 19,552 An. gambiae s.l. were collected. Deterrence, blood-feeding inhibition and exophily with VECTRON™ treated huts were very low. At 100 and 150 mg/m², mortality of wild An. gambiae s.l. ranged between 55% and 73%. Monthly cone bioassay mortality remained >80% up to 9 months. Conclusions: VECTRON™ T500 shows great potential as IRS formulation for malaria vector control. It can be added to the arsenal of IRS products for use in rotations to control malaria and manage mosquito insecticide resistance

    Parasitological Indices of Malaria Transmission in Children under Fifteen Years in Two Ecoepidemiological Zones in Southwestern Burkina Faso

    Get PDF
    Twenty years after the latest publications performed on the parasitological indices of malaria transmission in northwest of the second city of Burkina Faso, it was important to update the epidemiological profile of malaria in children under the age of 15 years. The objective of this study was to determine and compare the parasitological parameters of malaria transmission by season, area, and age in the two zones (rice and savanna) in the northwest of Bobo-Dioulasso, Burkina Faso. Overall, the results showed that there was no significant difference in the parasitological indices of malaria transmission within children under fifteen years between the rice site and the savannah site and whatever the season (P>0.05). The profound environmental modifications that occurred in the rice zone would have led to changes in vector behavior and consequently to changes in the epidemiological profile of malaria, contrary to the results obtained since the last publications. An entomological study correlated with this study is therefore necessary for effective decision-making for the malaria control in both areas. Future research must now focus on the impact that these profound environmental modifications of rice area are having on malaria control in Burkina Faso

    Assessment of household preferences for net textile type (polyester versus polyethylene) for decision-making of the National Malaria Control Programme in Burkina Faso: methods for a quasi-experimental study

    No full text
    Abstract Background A quasi-experimental comparative trial will be designed in Burkina Faso. The study will compare the use and preferences for two groups types of insecticide-treated nets textile: polyester-based and polyethylene-based, according to their use and preferences in selected health districts. These health districts will be selected in three eco-climate zones (Sahelian, dry savannah and wet savannah) in the country. These findings will inform decisions on future net procurements for national malaria control programme in 2025. Methods Quantitative surveys and qualitative data collection will be carried out to gather information on the type of net textile most commonly used and preferred by the community. They will be performed between the end of the dry season and the early rainy season. The quantitative surveys involved household interviews with households and individuals’ questionnaires, while the qualitative data collection involved in-depth individual interviews and focus group discussions to explore and clarify some key evaluation criteria. A total of 9450 insecticide-treated nets were surveyed for quantitative survey purposes. For the qualitative study, 48 in-depth individual interviews and 12 focus group discussions were carried out. A mixed model approach combining the results from quantitative surveys and qualitative studies will be used for decision-making on the type of insecticide-treated net preference. Conclusion This methodological approach will be used by the National Malaria Control Programme to conduct this study on determinants of net use in Burkina Faso in order to provide robust evidence across diverse settings. This mixed-methods approach for data collection and analysis could be used in other countries to provide evidence that would help to increase the uptake of insecticide-treated nets, the main vector control tool in Africa

    What happens to old insecticide-treated nets after households use in Burkina Faso?

    No full text
    Abstract Background Insecticide-treated nets (ITNs) are the most commonly deployed tools for controlling malaria transmission in sub-Saharan Africa. However, some reports associate multiple alternative uses of nets with poor disposal practices, prompting this study to assess existing alternative uses and disposal practices of old ITNs in Burkina Faso after four universal distribution campaigns. Methods A quantitative survey combined with qualitative data collection was used to describe existing alternative uses and disposal practices for old ITNs in households from selected study sites in the three climatic zones of Burkina Faso. A survey questionnaire was distributed to 3,780 participants, and 12 focus groups were held to elucidate responses regarding existing disposal practices and alternative uses of ITNs. Results Of the 3780 households surveyed, 87.4% (3,330) reported having disposed of their ITNs when they were no longer usable due to age or wear. The most commonly cited disposal methods included alternative uses (67.4%), disposal with other garbage (61.4%), and burying (9%). In addition, the most common alternative uses included fencing for crops and seedlings (51.8%); ropes for tying items (40.4%); animal protection fencing (17.8%); house fencing (16.8%); bed covers (13.3%) and curtains for doors or windows (12.6%). Furthermore, trends in ITNs disposal mechanisms and alternative uses differed between study sites in each climate zone. All these ITNs disposal mechanisms and the different types of alternative use of old ITNs were confirmed in the focus group discussions. Conclusion The findings underscore the need for comprehensive strategies to manage the disposal and repurposing of old ITNs in Burkina Faso. Addressing gaps in disposal guidelines, promoting safe and beneficial reuse practices, and actively involving communities in the decision-making process can help mitigate health risks associated with the improper disposal and repurposing of old insecticide-treated nets and improve the overall effectiveness of malaria control programmes. Through these efforts, both public health and environmental concerns can be addressed in a sustainable and collaborative manner

    Sympatric Populations of the Anopheles gambiae Complex in Southwest Burkina Faso Evolve Multiple Diverse Resistance Mechanisms in Response to Intense Selection Pressure with Pyrethroids

    Get PDF
    Pyrethroid resistance in the Anopheles vectors of malaria is driving an urgent search for new insecticides that can be used in proven vector control tools such as insecticide treated nets (ITNs). Screening for potential new insecticides requires access to stable colonies of the predominant vector species that contain the major pyrethroid resistance mechanisms circulating in wild populations. Southwest Burkina Faso is an apparent hotspot for the emergence of pyrethroid resistance in species of the Anopheles gambiae complex. We established stable colonies from larval collections across this region and characterised the resistance phenotype and underpinning genetic mechanisms. Three additional colonies were successfully established (1 An. coluzzii, 1 An. gambiae and 1 An. arabiensis) to add to the 2 An. coluzzii colonies already established from this region; all 5 strains are highly resistant to pyrethroids. Synergism assays found that piperonyl butoxide (PBO) exposure was unable to fully restore susceptibility although exposure to a commercial ITN containing PBO resulted in 100% mortality. All colonies contained resistant alleles of the voltage gated sodium channel but with differing proportions of alternative resistant haplotypes. RNAseq data confirmed the role of P450s, with CYP6P3 and CYP6Z2 elevated in all 5 strains, and identified many other resistance mechanisms, some found across strains, others unique to a particular species. These strains represent an important resource for insecticide discovery and provide further insights into the complex genetic changes driving pyrethroid resistance
    corecore