1,365 research outputs found
Spitzer IRAC confirmation of z_850-dropout galaxies in the Hubble Ultra Deep Field: stellar masses and ages at z~7
Using Spitzer IRAC mid-infrared imaging from the Great Observatories Origins
Deep Survey, we study z_850-dropout sources in the Hubble Ultra Deep Field.
After carefully removing contaminating flux from foreground sources, we clearly
detect two z_850-dropouts at 3.6 micron and 4.5 micron, while two others are
marginally detected. The mid-infrared fluxes strongly support their
interpretation as galaxies at z~7, seen when the Universe was only 750 Myr old.
The IRAC observations allow us for the first time to constrain the rest-frame
optical colors, stellar masses, and ages of the highest redshift galaxies.
Fitting stellar population models to the spectral energy distributions, we find
photometric redshifts in the range 6.7-7.4, rest-frame colors U-V=0.2-0.4,
V-band luminosities L_V=0.6-3 x 10^10 L_sun, stellar masses 1-10 x 10^9 M_sun,
stellar ages 50-200 Myr, star formation rates up to ~25 M_sun/yr, and low
reddening A_V<0.4. Overall, the z=7 galaxies appear substantially less massive
and evolved than Lyman break galaxies or Distant Red Galaxies at z=2-3, but
fairly similar to recently identified systems at z=5-6. The stellar mass
density inferred from our z=7 sample is rho* = 1.6^{+1.6}_{-0.8} x 10^6 M_sun
Mpc^-3 (to 0.3 L*(z=3)), in apparent agreement with recent cosmological
hydrodynamic simulations, but we note that incompleteness and sample variance
may introduce larger uncertainties. The ages of the two most massive galaxies
suggest they formed at z>8, during the era of cosmic reionization, but the star
formation rate density derived from their stellar masses and ages is not nearly
sufficient to reionize the universe. The simplest explanation for this
deficiency is that lower-mass galaxies beyond our detection limit reionized the
universe.Comment: 4 pages, 3 figures, emulateapj, Accepted for publication in ApJ
Letter
Theoretical Model for the Semimetal Yb_4As_3
We present a model which can explain semiquantitatively a number of the
unusual properties of \mbox{YbAs}. The structural phase transition at
T_{\text{c}}\simeq300\,\mbox{K} is described by a band Jahn-Teller effect of
correlated electrons and is interpreted as a charge ordering of the Yb ions.
The low carrier concentration in the low-temperature phase follows from the
strong electron correlations of the 4f-holes on the Yb sites and can be viewed
as self-doping of charge-ordered chains. The observed heavy-fermion behaviour
is on a scale of T^\ast\simeq50\,\mbox{K} and is due to spinon-like
excitations in the Yb-chains. The appearance of a second low-energy
scale around 0.2\,K is due to the Fermi energy of the low-density carriers.Comment: 7 pages, REVTeX, 1 Postscript-figure separatel
Ultradeep Infrared Array Camera Observations of sub-L* z~7 and z~8 Galaxies in the Hubble Ultra Deep Field: the Contribution of Low-Luminosity Galaxies to the Stellar Mass Density and Reionization
We study the Spitzer Infrared Array Camera (IRAC) mid-infrared (rest-frame
optical) fluxes of 14 newly WFC3/IR-detected z=7 z_{850}-dropout galaxies and 5
z=8 Y_{105}-dropout galaxies. The WFC3/IR depth and spatial resolution allow
accurate removal of contaminating foreground light, enabling reliable flux
measurements at 3.6 micron and 4.5 micron. None of the galaxies are detected to
[3.6]=26.9 (AB, 2 sigma), but a stacking analysis reveals a robust detection
for the z_{850}-dropouts and an upper limit for the Y_{105}-dropouts. We
construct average broadband SEDs using the stacked ACS, WFC3, and IRAC fluxes
and fit stellar population synthesis models to derive mean redshifts, stellar
masses, and ages. For the z_{850}-dropouts, we find z=6.9^{+0.1}_{-0.1},
(U-V)_{rest}=0.4, reddening A_V=0, stellar mass M*=1.2^{+0.3}_{-0.6} x 10^9
M_sun (Salpeter IMF). The best-fit ages ~300Myr, M/L_V=0.2, and
SSFR=1.7Gyr^{-1} are similar to values reported for luminous z=7 galaxies,
indicating the galaxies are smaller but not younger. The sub-L* galaxies
observed here contribute significantly to the stellar mass density and under
favorable conditions may have provided enough photons for sustained
reionization at 7<z<11. In contrast, the z=8.3^{+0.1}_{-0.2} Y_{105}-dropouts
have stellar masses that are uncertain by 1.5 dex due to the near-complete
reliance on far-UV data. Adopting the 2 sigma upper limit on the M/L(z=8), the
stellar mass density to M_{UV,AB} < -18 declines from
rho*(z=7)=3.7^{+1.0}_{-1.8} x 10^6 M_sun Mpc^{-3} to rho*(z=8) < 8 x 10^5 M_sun
Mpc^{-3}, following (1+z)^{-6} over 3<z<8. Lower masses at z=8 would signify
more dramatic evolution, which can be established with deeper IRAC
observations, long before the arrival of the James Webb Space Telescope.Comment: 6 pages, 3 figures, 2 tables, emulateapj, accepted for publication in
ApJ
Adaptive structures for whole-life energy savings
The design methodology described in this paper takes a substantial shift from conventional methods. Traditionally sizing is based on the worst expected load scenario. By contrast to this conventional passive approach the method presented here replaces passive member strategically with active elements (actuators) which are only activated when the loads reach a certain threshold. The structure can withstand low level of loads passively. Above the threshold, actuation comes in to allow the structure to cope with high but rare loading scenarios. Active control introduces operational energy consumption in addition to the energy embodied in a passive design. In this paper we use this dual design to minimize the overall energy required by the structures. This methodology has been used on a simple truss structure and it was showed that it allows significant weight saving compared to conventional passive design. We extend the application of the methodology to a more complex 3D structure. It is confirmed that an optimum activation threshold exists that leads to design that minimises the total energy of the structure. Compared to an optimised passive design we show that the total energy saving is 10-fold
Anaerobes and short-chain fatty acids in crevicular fluid from adults with chronic periodontitis
Pathogeny of adult chronic periodontitis is still unclear. Bacteriological and chemical analysis of crevicular fluid have shown, in active sites of the disease, a simultaneous presence of anaerobes and their major by-product: short-chain fatty acids. The last can decrease «in vitro» the neutrophil intracellular pH, whenever these cells are incubated in an acid medium. Clinical investigations are scarce which hold out data useful to attempt verifying this possible physiopathological mechanism. This work shows the presence of anaerobes in the active periodontal pockets, together with the presence of short-chain fatty acids likely to reach a concentration level comparable to that used for inhibiting neutrophils «in vitro».Forthcoming studies should investigate about a possible intracellular pH drop in the neutrophils and other cells of the inflamed periodontium.La pathogĂ©nie des parodontites chroniques de lâadulte nâest pas encore bien comprise. Des analyses bactĂ©riologiques et chimiques du liquide crĂ©viculaire ont permis de mettre en Ă©vidence, dans des sites actifs de la maladie, des germes anaĂ©robies et leurs principaux produits cataboliques: les acides gras Ă courte chaĂźne.Ceux-ci peuvent rĂ©duire «in vitro» le pH intracellulaire des neutrophiles en suspension dans un tampĂłn acide. Peu dâĂ©tudes prĂ©sentent des donnĂ©es cliniques permettant de vĂ©rifier «in vivo» cet Ă©ventuel mĂ©canisme physiopathologique. Ce travail montre la prĂ©sence simultanĂ©e, dans des poches parodontales, de germes anaĂ©robies et dâacides gras Ă courte chaĂźne Ă des concentrations similaires Ă celles utilisĂ©es pour inhiber «in vitro» des neutrophiles. Dâautres travaux devront Ă©tudier la chute Ă©ventuelle du pH intracellulaire des cellules du parodonte en Ă©tat dâinflammation chronique
The GREATS H+[OIII] Luminosity Function and Galaxy Properties at : Walking the Way of JWST
The James Webb Space Telescope will allow to spectroscopically study an
unprecedented number of galaxies deep into the reionization era, notably by
detecting [OIII] and H nebular emission lines. To efficiently prepare
such observations, we photometrically select a large sample of galaxies at
and study their rest-frame optical emission lines. Combining data from
the GOODS Re-ionization Era wide-Area Treasury from Spitzer (GREATS) survey and
from HST, we perform spectral energy distribution (SED) fitting, using
synthetic SEDs from a large grid of photoionization models. The deep
Spitzer/IRAC data combined with our models exploring a large parameter space
enables to constrain the [OIII]+H fluxes and equivalent widths for our
sample, as well as the average physical properties of galaxies, such
as the ionizing photon production efficiency with
. We
find a relatively tight correlation between the [OIII]+H and UV
luminosity, which we use to derive for the first time the [OIII]+H
luminosity function (LF) at . The [OIII]+H LF is higher
at all luminosities compared to lower redshift, as opposed to the UV LF, due to
an increase of the [OIII]+H luminosity at a given UV luminosity from
to . Finally, using the [OIII]+H LF, we make
predictions for JWST/NIRSpec number counts of galaxies. We find that
the current wide-area extragalactic legacy fields are too shallow to use JWST
at maximal efficiency for spectroscopy even at 1hr depth and JWST
pre-imaging to mag will be required.Comment: 13 pages, 9 figures, accepted for publication in MNRA
Impact of the capping layers on lateral confinement in InAs/InP quantum dots for 1.55 um laser applications srudied by magneto-photoluminescence.
We have used magnetophotoluminescence to study the impact of different capping layer material combinations (InP, GaInAsP quaternary alloy, or both InP and quaternary alloy) on lateral confinement in InAs/InP quantum dots (QDs) grown on (311)B orientated substrates. Exciton effective masses, Bohr radii, and binding energies are measured for these samples. Conclusions regarding the strength of the lateral confinement in the different samples are supported by photoluminescence at high excitation power. Contrary to theoretical predictions, InAs QDs in quaternary alloy are found to have better confinement properties than InAs/InP QDs. This is attributed to a lack of lateral intermixing with the quaternary alloy, which is present when InP is used to (partially) cap the dots. The implications of the results for reducing the temperature sensitivity of QD lasers are discussed. ©2005 American Institute of Physic
Expanded Search for z~10 Galaxies from HUDF09, ERS, and CANDELS Data: Evidence for Accelerated Evolution at z>8?
We search for z~10 galaxies over ~160 arcmin^2 of WFC3/IR data in the Chandra
Deep Field South, using the public HUDF09, ERS, and CANDELS surveys, that reach
to 5sigma depths ranging from 26.9 to 29.4 in H_160 AB mag. z>~9.5 galaxy
candidates are identified via J_125-H_160>1.2 colors and non-detections in any
band blueward of J_125. Spitzer IRAC photometry is key for separating the
genuine high-z candidates from intermediate redshift (z~2-4) galaxies with
evolved or heavily dust obscured stellar populations. After removing 16 sources
of intermediate brightness (H_160~24-26 mag) with strong IRAC detections, we
only find one plausible z~10 galaxy candidate in the whole data set, previously
reported in Bouwens et al. (2011). The newer data cover a 3x larger area and
provide much stronger constraints on the evolution of the UV luminosity
function (LF). If the evolution of the z~4-8 LFs is extrapolated to z~10, six
z~10 galaxies are expected in our data. The detection of only one source
suggests that the UV LF evolves at an accelerated rate before z~8. The
luminosity density is found to increase by more than an order of magnitude in
only 170 Myr from z~10 to z~8. This increase is >=4x larger than expected from
the lower redshift extrapolation of the UV LF. We are thus likely witnessing
the first rapid build-up of galaxies in the heart of cosmic reionization.
Future deep HST WFC3/IR data, reaching to well beyond 29 mag, can enable a more
robust quantification of the accelerated evolution around z~10.Comment: 13 pages, 11 figures, ApJ resubmitted after referee repor
Finite pure bending of curved pipes
We present an original treatment for the finite bending of curved pipes with arbitrary cross sections. The curved pipe is successively regarded as a three-dimensional continuum and a shell, and a formulation is proposed for each model. We show that, from a numerical point of view, the finite bending problem is reducible to an axisymmetric analysis augmented with 1 d.f. We also show how to take advantage of this analogy to solve the bending problem using standard axisymmetric FE routine
- âŠ