34 research outputs found
District-level approach for tailoring and targeting interventions: a new path for malaria control and elimination.
Despite huge investments and implementation of effective interventions for malaria, progress has stalled, with transmission being increasingly localized among difficult-to-reach populations and outdoor-biting vectors. Targeting difficult pockets of transmission will require the development of tailored and targeted approaches suited to local context, drawing from insights close to the frontlines. Districts are best placed to develop tailored, locally appropriate approaches. We propose a reorganization of how malaria services are delivered. Firstly, enabling district health officers to serve as conduits between technical experts in national malaria control programmes and local community leaders with knowledge specific to local, at-risk populations; secondly, empowering district health teams to make malaria control decisions. This is a radical shift that requires the national programme to cede some control. Shifting towards a district or provincial level approach will necessitate deliberate planning, and repeated, careful assessment, starting with piloting and learning through experience. Donors will need to alter current practice, allowing for flexible funding to be controlled at sub-national levels, and to mix finances between case management, vector control and surveillance, monitoring and evaluation. System-wide changes proposed are challenging but may be necessary to overcome stalled progress in malaria control and elimination and introduce targeted interventions tailored to the needs of diverse malaria affected populations
Attacking the mosquito on multiple fronts: insights from the vector control optimization model (VCOM) for malaria elimination
Despite great achievements by insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions.; We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus) or 80% (An. arabiensis) and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage) may be sufficient to suppress all the three species to an extent required to achieve local malaria elimination.; The Vector Control Optimization Model (VCOM) is a computational tool to predict the impact of combined vector control interventions at the mosquito population level in a range of eco-epidemiological settings. The model predicts specific combinations of vector control tools to achieve local malaria elimination in a range of eco-epidemiological settings and can assist researchers and program decision-makers on the design of experimental or operational research to test vector control interventions. A corresponding graphical user interface is available for national malaria control programs and other end users
Developing an expanded vector control toolbox for malaria elimination
Vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) accounts for most of the malaria burden reductions achieved recently in low and middle-income countries (LMICs). LLINs and IRS are highly effective, but are insufficient to eliminate malaria transmission in many settings because of operational constraints, growing resistance to available insecticides and mosquitoes that behaviourally avoid contact with these interventions. However, a number of substantive opportunities now exist for rapidly developing and implementing more diverse, effective and sustainable malaria vector control strategies for LMICs. For example, mosquito control in high-income countries is predominantly achieved with a combination of mosquito-proofed housing and environmental management, supplemented with large-scale insecticide applications to larval habitats and outdoor spaces that kill off vector populations en masse, but all these interventions remain underused in LMICs. Programmatic development and evaluation of decentralised, locally managed systems for delivering these proactive mosquito population abatement practices in LMICs could therefore enable broader scale-up. Furthermore, a diverse range of emerging or repurposed technologies are becoming available for targeting mosquitoes when they enter houses, feed outdoors, attack livestock, feed on sugar or aggregate into mating swarms. Global policy must now be realigned to mobilise the political and financial support necessary to exploit these opportunities over the decade ahead, so that national malaria control and elimination programmes can access a much broader, more effective set of vector control interventions
Larviciding for malaria control and elimination in Africa
Background: Global progress toward malaria elimination and eradication goals has stagnated in recent years, with many African countries reporting increases in malaria morbidity and mortality. Insecticide-treated nets and indoor residual spraying are effective, but the emergence and increased intensity of insecticide resistance and the challenge of outdoor transmission are undermining their impact. New tools are needed to get back on track towards global targets. This Perspective explores the major challenges hindering wider-scale implementation of larviciding in Africa and identifies potential solutions and opportunities to overcome these barriers. Larviciding in Africa: overview, challenges, and solutions: Larviciding is a valuable vector control tool with strong potential for regional scale-up. There is considerable evidence of its effectiveness, and the World Health Organization (WHO) recommends it as a supplemental intervention. However, malaria programmes hoping to implement larviciding face significant barriers, including (1) poor global technical, policy, and funding support; (2) fragmented implementation and experience; (3) high complexity of delivery and impact evaluation; and (4) limited access to the full range of WHO prequalified larvicide products. Strategic barriers related to global policy and donor hesitancy can be overcome through a coordinated demonstration of cost-effectiveness. Technological advancements and strengthened operational capacity have already overcome technical barriers related to larvicide delivery, targeting, coverage, and evaluation. Developing a Community of Practice platform for larviciding has strong potential to consolidate efforts, addressing the challenge of fragmented implementation and experience. Such a platform can serve as a resource center for African malaria programmes, collating and disseminating technical guidance, facilitating the exchange of best practices, and aiding malaria programmes and partners in designing and evaluating larviciding projects. Conclusion: The global shift toward targeted and adaptive interventions enables the incorporation of larviciding into an expanded vector control toolbox. As more African countries implement larvicide programmes, establishing a regional Community of Practice platform for exchanging experiences and best practices is necessary to strengthen the evidence base for cost-effective implementation, advocate for support, and inform policy recommendations, thus supporting Africa’s progress toward malaria elimination
The effect of novel mosquito bite prevention tools on Anopheles minimus landing and key secondary endpoints: semi-field evaluations in Thailand
Background
The Greater Mekong Subregion (GMS) aims to eliminate all human malaria by 2030 and is making substantial progress toward this goal, with malaria increasingly confined to forest foci. These transmission foci are predominantly inhabited by ethnic minorities, local populations, and rural mobile and migrant populations working in mining and agriculture. The recommendations of the World Health Organization (WHO) on malaria elimination states that small population groups which constitute a large proportion of the malaria transmission reservoir should benefit from targeted strategies to reduce transmission overall. These population groups are exposed to malaria vector bites during the day due to Anopheles daytime biting, and during the night, due to low bed net use and open sleeping structures. Such characteristics limit the effectiveness of the WHO core vector control strategies [indoor residual spraying (IRS), insecticide-treated nets (ITNs)], which target indoor resting and indoor feeding mosquitoes. Interventions that target daytime and outdoor resting or biting mosquitoes, and which complement IRS and ITNs and drug strategies, may hasten a decline in the malaria burden.
Methods
This study evaluated two transfluthrin- and one metofluthrin-based volatile pyrethroid spatial repellents (VPSRs), and etofenprox insecticide-treated clothing (ITC) with and without a topical repellent in a semi-field system (SFS) at two research sites in Thailand, across two trial rounds. The study estimated the protective efficacies of the vector control tools against two pyrethroid-susceptible Anopheles minimus strains in the form of 15 interventions, including a combined VPSR and ITC intervention. The interventions’ modes of action were studied by measuring their impact on mosquito landing, and on key life history traits known to affect vectoral capacity (knockdown, post-exposure blood feeding, and 24-h mortality) using a block-randomized crossover design. The odds ratio (OR) for each intervention compared to the control on each outcome was estimated.
Results
All interventions substantially reduced An. minimus landings and prevented more than 50% mosquito landings when new (VPSRs) or unwashed (treated clothing). In addition to landing reduction, all interventions decreased post-exposure blood feeding, induced knockdown and increased mortality at 24 h. The VPSR interventions were generally more protective against landing than the treated clothing intervention. The combined intervention (VPSR + ITC) provided the greatest protection overall.
Conclusion
This SFS evaluation indicates an effect of these VPSR and ITC interventions in reducing An. minimus landing for the user, and indicates their potential for community protection by secondary modes of action. This study demonstrates the utility of SFS trials in the evaluation of bite prevention tools and emphasizes the need for multiple evaluations at different sites. It also highlights possible sources of biases observed, including the measuring of mosquito landing rather than biting, weather parameters, and low mosquito recapture
Field evaluation of a volatile pyrethroid spatial repellent and etofenprox treated clothing for outdoor protection against forest malaria vectors in Cambodia
Cambodia’s goal to eliminate malaria by 2025 is challenged by persistent transmission in forest and forest fringe areas, where people are exposed to Anopheles mosquito bites during the day and night. Volatile pyrethroid spatial repellents (VPSRs) and insecticide-treated clothing (ITC) could address these gaps. This study evaluated the outdoor application of one passive transfluthrin-based VPSR, four etofenprox-ITCs paired with a picaridin topical repellent, and a combination of VPSR and ITC against wild Anopheles landing in Cambodia. A 7 × 7 Latin-square study was conducted over 49 collection nights in temporary open structures in Mondulkiri Province. All interventions substantially reduced Anopheles landing, with protective efficacy ranging from 61 to 95%. Mathematical modeling showed significant reductions in vectoral capacity, especially with the combined ITC and VPSR and VPSR alone, albeit with decreased effectiveness over time. These interventions have the potential to reduce outdoor and daytime Anopheles biting, offering valuable contributions to malaria elimination efforts in Cambodia and the Greater Mekong Subregion, contingent upon achieving effective coverage and adherence
Preventing the Reintroduction of Malaria in Mauritius: A Programmatic and Financial Assessment
Sustaining elimination of malaria in areas with high receptivity and vulnerability will require effective strategies to prevent reestablishment of local transmission, yet there is a dearth of evidence about this phase. Mauritius offers a uniquely informative history, with elimination of local transmission in 1969, re-emergence in 1975, and second elimination in 1998. Towards this end, Mauritius's elimination and prevention of reintroduction (POR) programs were analyzed via a comprehensive review of literature and government documents, supplemented by program observation and interviews with policy makers and program personnel. The impact of the country's most costly intervention, a passenger screening program, was assessed quantitatively using simulation modeling
Preventing the reintroduction of malaria in Mauritius: a programmatic and financial assessment.
TIMESS a power analysis tool to estimate the number of locations and repeated measurements for seasonally and clustered mosquito surveys
Every day, hundreds of mosquito surveys are carried out around the world to inform policy and management decisions on how best to reduce or prevent the burden of mosquito-borne disease or mosquito nuisance. These surveys are usually time consuming and expensive. Mosquito surveillance is the essential component of vector management and control. However, surveillance is often carried out with a limited if not without a quantitative assessment of the sampling effort which can results in underpowered or overpowered studies, or certainly in overpowered studies when power analyses are carried out assuming independence in the measurements obtained from longitudinal and geographically proximal mosquito surveys. Many free, open-source and user-friendly tools to calculate statistical power are available, such as G*Power, glimmpse, powerandsamplesize.com website or R-cran packages (pwr and WebPower to name few of them). However, these tools may not be sufficient for powering mosquito surveys due to the additional properties of seasonal and spatially clustered repeated measurements required to reflect mosquito population dynamics. To facilitate power analysis for mosquito surveillance, we have developed TIMESS, a deployable browser-based Shiny app that estimates the number of repeated measurements and locations of mosquito surveys for a given effect size, power, significance level, seasonality and level of expected between-location clustering. In this article we describe TIMESS, its usage, strengths and limitations